< Back to 68k.news US front page

Explosive 2018 eruptions at Kīlauea driven by a collapse-induced stomp-rocket mechanism

Original source (on modern site)

References

  1. Carey, S. & Bursik, M. in The Encyclopedia of Volcanoes 571-585 (Elsevier, 2015).

  2. Macedonio, G., Costa, A. & Folch, A. Uncertainties in volcanic plume modeling: a parametric study using FPLUME. J. Volcanol. Geotherm. Res. 326, 92-102 (2016).

    Article  CAS  Google Scholar 

  3. Gonnermann, H. & Taisne, B. in The Encyclopedia of Volcanoes 215-224 (Elsevier, 2015).

  4. Barberi, F., Bertagnini, A., Landi, P. & Principe, C. A review on phreatic eruptions and their precursors. J. Volcanol. Geotherm. Res. 52, 231-246 (1992).

    Article  CAS  Google Scholar 

  5. Neal, C. et al. The 2018 rift eruption and summit collapse of Kilauea Volcano. Science 363, 367-374 (2019).

    Article  CAS  Google Scholar 

  6. Anderson, K. R. et al. The 2018 eruption of Kīlauea: insights, puzzles, and opportunities for volcano science. Annu. Rev. Earth Planet. Sci. 52, 1.1-1.39 (2024).

  7. Anderson, K. R. et al. Magma reservoir failure and the onset of caldera collapse at Kilauea Volcano in 2018. Science 366, eaaz1822 (2019).

    Article  CAS  Google Scholar 

  8. Eychenne, J., Houghton, B. F., Swanson, D. A., Carey, R. J. & Swavely, L. Dynamics of an open basaltic magma system: the 2008 activity of the Halemaʻumaʻu Overlook vent, Kīlauea Caldera. Earth Planet. Sci. Lett. 409, 49-60 (2015).

    Article  CAS  Google Scholar 

  9. Stearns, H. T. The explosive phase of Kilauea Volcano, Hawaii, in 1924. Bull. Volcanol. 1, 193-208 (1925).

    Article  Google Scholar 

  10. Hsieh, P. & Ingebritsen, S. Groundwater inflow toward a preheated volcanic conduit: application to the 2018 eruption at Kilauea Volcano, Hawaii. J. Geophys. Res. B 124, 1498-1506 (2019).

    Article  Google Scholar 

  11. Neal, C. A. & Anderson, K. R. Preliminary Analyses of Volcanic Hazards at Kīlauea Volcano, Hawaii, 2017-2018 Open-File Report 2020-1002 (US Geological Survey, 2020).

  12. Shelly, D. R. & Thelen, W. A. Anatomy of a caldera collapse: Kilauea 2018 summit seismicity sequence in high resolution. Geophys. Res. Lett. 46, 14395-14403 (2019).

    Article  Google Scholar 

  13. Tepp, G. et al. Seismic and geodetic progression of the 2018 summit caldera collapse of Kilauea volcano. Earth Planet. Sci. Lett. 540, 116250 (2020).

    Article  CAS  Google Scholar 

  14. Anderson, K. R. & Johanson, I. Incremental caldera collapse at Kīlauea Volcano recorded in ground tilt and high-rate GNSS data, with implications for collapse dynamics and the magma system. Bull. Volcanol. 84, 89 (2022).

    Article  Google Scholar 

  15. Thelen, W., Waite, G., Lyons, J. & Fee, D. Infrasound observations and constraints on the 2018 eruption of Kilauea Volcano, Hawaii. Bull. Volcanol. 84, 76 (2022).

    Article  Google Scholar 

  16. Mastin, L. G. et al. A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J. Volcanol. Geotherm. Res. 186, 10-21 (2009).

    Article  CAS  Google Scholar 

  17. Hreinsdóttir, S. et al. Volcanic plume height correlated with magma-pressure change at Grimsvotn Volcano, Iceland. Nat. Geosci. 7, 214-218 (2014).

    Article  Google Scholar 

  18. Kozono, T., Ueda, H., Shimbori, T. & Fukui, K. Correlation between magma chamber deflation and eruption cloud height during the 2011 Shinmoe-dake eruptions. Earth Planets Space 66, 139 (2014).

  19. Brodsky, E. E., Kanamori, H. & Sturtevant, B. A seismically constrained mass discharge rate for the initiation of the May 18, 1980 Mount St. Helens eruption. J. Geophys. Res. B 104, 29387-29400 (1999).

    Article  Google Scholar 

  20. Prejean, S. G. & Brodsky, E. E. Volcanic plume height measured by seismic waves based on a mechanical model. J. Geophys. Res. B 116, B01306 (2011).

  21. Baker, S. & Amelung, F. Top-down inflation and deflation at the summit of Kilauea Volcano, Hawaii observed with InSAR. J. Geophys. Res. B 117, B12406 (2012).

  22. Poland, M., Miklius, A., Jeff Sutton, A. & Thornber, C. A mantle-driven surge in magma supply to Kilauea Volcano during 2003-2007. Nat. Geosci. 5, 295-300 (2012).

    Article  CAS  Google Scholar 

  23. Liang, C., Crozier, J., Karlstrom, L. & Dunham, E. M. Magma oscillations in a conduit reservoir system, application to very long period (VLP) seismicity at basaltic volcanoes: 2. Data inversion and interpretation at Kīlauea Volcano. J. Geophys. Res. B 125, e2019JB017437 (2020).

  24. Chouet, B. & Dawson, P. Very long period conduit oscillations induced by rockfalls at Kilauea Volcano, Hawaii. J. Geophys. Res. B 118, 5352-5371 (2013).

    Article  Google Scholar 

  25. Soubestre, J., Chouet, B. & Dawson, P. Sources of volcanic tremor associated with the summit caldera collapse during the 2018 East Rift eruption of Kilauea Volcano, Hawai'i. J. Geophys. Res. B 126, e2020JB021572 (2021).

  26. Lai, V. H., Zhan, Z., Brissaud, Q., Sandanbata, O. & Miller, M. S. Inflation and asymmetric collapse at Kīlauea summit during the 2018 eruption from seismic and infrasound analyses. J. Geophys. Res. B 126, e2021JB022139 (2021).

  27. Segall, P., Anderson, K. R., Pulvirenti, F., Wang, T. A. & Johanson, I. Caldera collapse geometry revealed by near-field GPS displacements at Kilauea Volcano in 2018. Geophys. Res. Lett. 47, e2020GL088867 (2020).

  28. Heap, M. J. & Violay, M. E. The mechanical behaviour and failure modes of volcanic rocks: a review. Bull. Volcanol. 83, 33 (2021).

  29. Geyer, A. & Martí, J. A short review of our current understanding of the development of ring faults during collapse caldera formation. Front. Earth Sci. 2, 22 (2014).

  30. Karlstrom, L., Holtzman, B., Barth, A., Crozier, J. & Paté, A. Earth is noisy. Why should its data be silent? Eos 104, https://doi.org/10.1029/2023EO230196 (2023).

  31. Dufek, J., Manga, M. & Patel, A. Granular disruption during explosive volcanic eruptions. Nat. Geosci. 5, 561-564 (2012).

    Article  CAS  Google Scholar 

  32. Sparks, R. S. J. et al. Volcanic Plumes (Wiley, 1997).

  33. Papale, P., Neri, A. & MacEdonio, G. The role of magma composition and water content in explosive eruptions. 1. Conduit ascent dynamics. J. Volcanol. Geotherm. Res. 87, 75-93 (1998).

    Article  CAS  Google Scholar 

  34. Lerner, A. H. et al. The petrologic and degassing behavior of sulfur and other magmatic volatiles from the 2018 eruption of Kilauea, Hawaii: melt concentrations, magma storage depths, and magma recycling. Bull. Volcanol. 83, 43 (2021).

    Article  Google Scholar 

  35. Newhall, C. G. & Self, S. The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J. Geophys. Res. 87, 1231-1238 (1982).

    Article  Google Scholar 

  36. Papale, P. Global time-size distribution of volcanic eruptions on Earth. Sci. Rep. 8, 6838 (2018).

  37. Koyaguchi, T. & Woods, A. W. On the formation of eruption columns following explosive mixing of magma and surface-water. J. Geophys. Res. B 101, 5561-5574 (1996).

  38. Simkin, T. & Howard, K. A. Caldera collapse in the Galapagos Islands, 1968. Science 169, 429-437 (1970).

  39. Fedotov, S. A., Chirkov, A. M., Gusev, N. A., Kovalev, G. N. & Slezin, Y. B. The large fissure eruption in the region of Plosky Tolbachik volcano in Kamchatka, 1975-1976. Bull. Volcanol. 43, 47-60 (1980).

    Article  Google Scholar 

  40. Geshi, N., Shimano, T., Chiba, T. & Nakada, S. Caldera collapse during the 2000 eruption of Miyakejima Volcano, Japan. Bull. Volcanol. 64, 55-68 (2002).

  41. Staudacher, T. et al. The April 2007 eruption and the Dolomieu crater collapse, two major events at Piton de la Fournaise (La Reunion Island, Indian Ocean). J. Volcanol. Geotherm. Res. 184, 126-137 (2009).

    Article  CAS  Google Scholar 

  42. Devenish, B. J. Using simple plume models to refine the source mass flux of volcanic eruptions according to atmospheric conditions. J. Volcanol. Geotherm. Res. 256, 118-127 (2013).

    Article  CAS  Google Scholar 

  43. Prata, F. & Rose, B. in The Encyclopedia of Volcanoes 911-934 (Elsevier, 2015).

  44. Flinders, A. F. et al. Very-long-period (VLP) seismic artifacts during the 2018 caldera collapse at Kilauea, Hawaii. Seismol. Res. Lett. 91, 3417-3432 (2020).

    Article  Google Scholar 

  45. Marzano, F. S., Picciotti, E., Montopoli, M. & Vulpiani, G. Inside volcanic clouds: remote sensing of ash plumes using microwave weather radars. Bull. Am. Meteorol. Soc. 94, 1567-1586 (2013).

    Article  Google Scholar 

  46. Maeda, Y., Takeo, M. & Ohminato, T. A waveform inversion including tilt: method and simple tests. Geophys. J. Int. 184, 907-918 (2011).

    Article  Google Scholar 

  47. Segall, P. Earthquake and Volcano Deformation (Princeton Univ. Press, 2010).

  48. Masse, R. P. & Needham, R. E. NEIC—the National Earthquake Information Center Earthquakes & Volcanoes Vol. 21 (USGS, 1989); http://pubs.er.usgs.gov/publication/70016044

  49. Ekström, G., Nettles, M. & Dziewoński, A. M. The Global CMT Project 2004-2010: centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter. 200/201, 1-9 (2012).

    Article  Google Scholar 

  50. Cervelli, P. Analytical Expressions for Deformation from an Arbitrarily Oriented Spheroid in a Half-Space (USGS, 2013); http://volcanoes.usgs.gov/software/spheroid

  51. Mogi, K. Relation between the eruptions of various volcanoes and deformations of the ground surfaces around them. Bull. Earthq. Res. Inst. 36, 99-134 (1958).

    Google Scholar 

  52. Crozier, J. et al. Understanding the drivers of volcano deformation through geodetic model verification and validation. Bull. Volcanol. 85, 74 (2023).

    Article  Google Scholar 

  53. Okada, Y. Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 82, 1018-1040 (1992).

    Article  Google Scholar 

  54. Nikkhoo, M. & Walter, T. R. Triangular dislocation: an analytical, artefact-free solution. Geophys. J. Int. 201, 1119-1141 (2015).

    Article  Google Scholar 

  55. Valentine, G. A. & Wohletz, K. H. Numerical models of Plinian eruption columns and pyroclastic flows. J. Geophys. Res. B 94, 1867-1887 (1989).

    Article  Google Scholar 

  56. Graf, H. F., Herzog, M., Oberhuber, J. M. & Textor, C. Effect of environmental conditions on volcanic plume rise. J. Geophys. Res. D 104, 24309-24320 (1999).

    Article  Google Scholar 

  57. Clarke, A. B., Voight, B., Nerl, A. & Macedonio, G. Transient dynamics of vulcanian explosions and column collapse. Nature 415, 897-901 (2002).

    Article  CAS  Google Scholar 

  58. Neri, A., Di Muro, A. & Rosi, M. Mass partition during collapsing and transitional columns by using numerical simulations. J. Volcanol. Geotherm. Res. 115, 1-18 (2002).

    Article  CAS  Google Scholar 

  59. Dufek, J. & Bergantz, G. W. Dynamics and deposits generated by the Kos Plateau Tuff eruption: controls of basal particle loss on pyroclastic flow transport. Geochem. Geophys. Geosyst. 8, 12 (2007).

  60. Ogden, D. E., Glatzmaier, G. A. & Wohletz, K. H. Effects of vent overpressure on buoyant eruption columns: implications for plume stability. Earth Planet. Sci. Lett. 268, 283-292 (2008).

    Article  CAS  Google Scholar 

  61. Chakraborty, P., Gioia, G. & Kieffer, S. W. Volcanic mesocyclones. Nature 458, 497-500 (2009).

    Article  CAS  Google Scholar 

  62. Syamlal, M., Rogers, W. & O'Brien, T. MFIX Documentation Theory Guide Technical Report (US Department of Energy Office of Scientific and Technical Information, 1993).

  63. Dartevelle, S., Rose, W. I., Stix, J., Kelfoun, K. & Vallance, J. W. Numerical modeling of geophysical granular flows: 2. Computer simulations of Plinian clouds and pyroclastic flows and surges. Geochem. Geophys. Geosyst. 5, 8 (2004).

  64. Jackson, R. Some mathematical and physical aspects of continuum models for the motion of granular materials. In Theory of Dispersed Multiphase Flow: Proceedings of an Advanced Seminar, Conducted by the Mathematics Research Center, the University of Wisconsin—Madison, May 26-28, 1982 (ed. Meyer, R. E.) 291-337 (Academic, 1983).

  65. Lun, C. K., Savage, S. B., Jeffrey, D. J. & Chepurniy, N. Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. J. Fluid Mech. 140, 223-256 (1984).

    Article  Google Scholar 

  66. Pitman, E. B. & Schaeffer, D. G. Stability of time dependent compressible granular flow in two dimensions. Commun. Pure Appl. Math. 40, 421-447 (1987).

    Article  Google Scholar 

  67. Dufek, J. & Bergantz, G. W. Transient two-dimensional dynamics in the upper conduit of a rhyolitic eruption: a comparison of closure models for the granular stress. J. Volcanol. Geotherm. Res. 143, 113-132 (2005).

    Article  CAS  Google Scholar 

  68. Bird, R. B., Stewart, W. E. & Lightfoot, E. N. Transport Phenomena (Wiley, 1960).

  69. Johanson, I. & Miklius, A. Tiltmeter Data from Kilauea Volcano, Hawaii, Spanning the 2018 Eruption and Earthquake Sequence (SDC, USGS, 2019); https://doi.org/10.5066/P9310M9N

  70. Mosbrucker, A., Zoeller, M. & Ramsey, D. Digital Elevation Model of Kilauea Volcano, Hawaii, Based on July 2019 Airborne Lidar Surveys (USGS, 2020); https://doi.org/10.5066/P9F1ZU8O

Download references

< Back to 68k.news US front page