< Back to 68k.news US front page

Earliest molecular events of vision revealed

Original source (on modern site) | Article images: [1] [2] [3]

Light-sensitive proteins called rhodopsins in the vertebrate eye initiate the cellular processes of vision. Leading-edge crystallography experiments have revealed the molecular mechanism by which light activates these proteins.

  1. Marius Schmidt
    1. Marius Schmidt is in the Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA.

  2. Emina A. Stojković
    1. Emina A. Stojković is in the Department of Biology, Northeastern Illinois University, Chicago, Illinois 60625, USA.

Most vertebrate animals depend on vision to navigate their environment and avoid predators. In the vertebrate eye, light is converted into electrical signals by a receptor protein known as rhodopsin, which spans the membranes of rod cells in the retina; the electrical signals are then processed in the brain to generate a mental image. The 'master switch' that responds to light and activates rhodopsin is a pigment called retinal1,2 — an organic cofactor and derivative of vitamin A. Writing in Nature, Gruhl et al.3 report ultrafast, time-resolved crystallography experiments that show how this switch is flipped, finally revealing the molecular mechanism of rhodopsin activation.

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

$29.99 / 30 days

cancel any time

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Nature 615, 802-803 (2023)

doi: https://doi.org/10.1038/d41586-023-00504-4

References

  1. Ernst, O. P. et al. Chem. Rev. 114, 126-163 (2014).

    Article  PubMed  Google Scholar 

  2. Wald, G. Science 162, 230-239 (1968).

    Article  PubMed  Google Scholar 

  3. Gruhl, T. et al. Nature 615, 939-944 (2023).

    Article  Google Scholar 

  4. Dryja, T. P. et al. Nature 343, 364-366 (1990).

    Article  PubMed  Google Scholar 

  5. Rao, V. R., Cohen, G. B. & Oprian, D. D. Nature 367, 639-642 (1994).

    Article  PubMed  Google Scholar 

  6. Ovchinnikov, Y. et al. Bioorg. Khim. 8, 1011-1014 (1982).

    Google Scholar 

  7. Schertler, G. F. X., Villa, C. & Henderson, R. Nature 362, 770-772 (1993).

    Article  PubMed  Google Scholar 

  8. Palczewski, K. et al. Science 289, 739-745 (2000).

    Article  PubMed  Google Scholar 

  9. Tenboer, J. et al. Science 346, 1242-1246 (2014).

    Article  PubMed  Google Scholar 

  10. Chapman, H. N. et al. Nature 470, 73-77 (2011).

    Article  PubMed  Google Scholar 

  11. Warshel, A. Nature 260, 678-683 (1976).

    Article  Google Scholar 

  12. Zhou, Q. et al. eLife 8, e50279 (2019).

    Article  PubMed  Google Scholar 

  13. Nogly, P. et al. Science 361, 145-148 (2018).

    Article  Google Scholar 

Download references

Competing Interests

The authors declare no competing interests.

Subjects

Latest on:

< Back to 68k.news US front page