< Back to 68k.news UK front page

Free-floating binary planets from ejections during close stellar encounters

Original source (on modern site)

  • Christiansen, J. L. Five thousand exoplanets at the NASA Exoplanet Archive. Nat. Astron. 6, 516-519 (2022).

    Article  ADS  Google Scholar 

  • Zhu, W. & Dong, S. Exoplanet statistics and theoretical implications. Annu. Rev. Astron. Astrophys. 59, 291-336 (2021).

    Article  ADS  Google Scholar 

  • Pollack, J. B. et al. Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62-85 (1996).

    Article  ADS  Google Scholar 

  • Ormel, C. W. & Klahr, H. H. The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks. Astron. Astrophys. 520, A43 (2010).

    Article  ADS  Google Scholar 

  • Lambrechts, M. & Johansen, A. Rapid growth of gas-giant cores by pebble accretion. Astron. Astrophys. 544, A32 (2012).

    Article  ADS  Google Scholar 

  • Mayor, M. & Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 378, 355-359 (1995).

    Article  ADS  Google Scholar 

  • Winn, J. N. & Fabrycky, D. C. The occurrence and architecture of exoplanetary systems. Annu. Rev. Astron. Astrophys. 53, 409-447 (2015).

    Article  ADS  Google Scholar 

  • Morales, J. C. et al. A giant exoplanet orbiting a very-low-mass star challenges planet formation models. Science 365, 1441-1445 (2019).

    Article  ADS  Google Scholar 

  • Marois, C. et al. Direct imaging of multiple planets orbiting the star HR 8799. Science 322, 1348-1352 (2008).

    Article  ADS  Google Scholar 

  • Lafrenière, D. et al. Discovery of an ~23 MJup brown dwarf orbiting ~700 au from the massive star HIP 78530 in Upper Scorpius. Astrophys. J. 730, 42 (2011).

    Article  ADS  Google Scholar 

  • Deacon, N. R., Schlieder, J. E. & Murphy, S. J. A nearby young M dwarf with a wide, possibly planetary-mass companion. Mon. Not. R. Astron. Soc. 457, 3191-3199 (2016).

    Article  ADS  Google Scholar 

  • Miret-Roig, N. et al. A rich population of free-floating planets in the Upper Scorpius young stellar association. Nat. Astron. 6, 89-97 (2022).

    Article  ADS  Google Scholar 

  • Pearson, S. G. & McCaughrean, M. J. Jupiter mass binary objects in the Trapezium cluster. Preprint at https://arxiv.org/abs/2310.01231 (2023).

  • Lin, D. N. C., Bodenheimer, P. & Richardson, D. C. Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature 380, 606-607 (1996).

    Article  ADS  Google Scholar 

  • Winn, J. N., Fabrycky, D., Albrecht, S. & Johnson, J. A. Hot stars with hot Jupiters have high obliquities. Astrophys. J. Lett. 718, L145-L149 (2010).

    Article  ADS  Google Scholar 

  • Chatterjee, S., Ford, E. B., Matsumura, S. & Rasio, F. A. Dynamical outcomes of planet-planet scattering. Astrophys. J. 686, 580-602 (2008).

    Article  ADS  Google Scholar 

  • Lee, E. J. The boundary between gas-rich and gas-poor planets. Astrophys. J. 878, 36 (2019).

    Article  ADS  Google Scholar 

  • Lambrechts, M. & Johansen, A. Forming the cores of giant planets from the radial pebble flux in protoplanetary discs. Astron. Astrophys. 572, A107 (2014).

    Article  ADS  Google Scholar 

  • Veras, D. & Raymond, S. N. Planet-planet scattering alone cannot explain the free-floating planet population. Mon. Not. R. Astron. Soc. 421, L117-L121 (2012).

    Article  ADS  Google Scholar 

  • Boss, A. P. Giant planet formation by gravitational instability. Science 276, 1836-1839 (1997).

    Article  ADS  Google Scholar 

  • Gammie, C. F. Nonlinear outcome of gravitational instability in cooling, gaseous disks. Astrophys. J. 553, 174-183 (2001).

    Article  ADS  Google Scholar 

  • Rafikov, R. R. Can giant planets form by direct gravitational instability? Astrophys. J. Lett. 621, L69-L72 (2005).

    Article  ADS  Google Scholar 

  • Boley, A. C. & Durisen, R. H. On the possibility of enrichment and differentiation in gas giants during birth by disk instability. Astrophys. J. 724, 618-639 (2010).

    Article  ADS  Google Scholar 

  • Nayakshin, S. Formation of terrestrial planet cores inside giant planet embryos. Mon. Not. R. Astron. Soc. 413, 1462-1478 (2011).

    Article  ADS  Google Scholar 

  • Zhu, Z., Hartmann, L., Nelson, R. P. & Gammie, C. F. Challenges in forming planets by gravitational instability: disk Irradiation and clump migration, accretion, and tidal destruction. Astrophys. J. 746, 110 (2012).

    Article  ADS  Google Scholar 

  • Keppler, M. et al. Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70. Astron. Astrophys. 617, A44 (2018).

    Article  Google Scholar 

  • Haffert, S. Y. et al. Two accreting protoplanets around the young star PDS 70. Nat. Astron. 3, 749-754 (2019).

    Article  ADS  Google Scholar 

  • Laughlin, G. & Adams, F. C. The modification of planetary orbits in dense open clusters. Astrophys. J. Lett. 508, L171-L174 (1998).

    Article  ADS  Google Scholar 

  • Bonnell, I. A., Smith, K. W., Davies, M. B. & Horne, K. Planetary dynamics in stellar clusters. Mon. Not. R. Astron. Soc. 322, 859-865 (2001).

    Article  ADS  Google Scholar 

  • Ford, E. B., Rasio, F. A. & Yu, K. Chaotic interactions in multiple planet systems. ISSI Sci. Rep. Ser. 6, 123-136 (2006).

    ADS  Google Scholar 

  • Malmberg, D. et al. Close encounters in young stellar clusters: implications for planetary systems in the solar neighbourhood. Mon. Not. R. Astron. Soc. 378, 1207-1216 (2007).

    Article  ADS  Google Scholar 

  • Fregeau, J. M., Chatterjee, S. & Rasio, F. A. Dynamical interactions of planetary systems in dense stellar environments. Astrophys. J. 640, 1086-1098 (2006).

    Article  ADS  Google Scholar 

  • Malmberg, D., Davies, M. B. & Heggie, D. C. The effects of fly-bys on planetary systems. Mon. Not. R. Astron. Soc. 411, 859-877 (2011).

    Article  ADS  Google Scholar 

  • Hao, W., Kouwenhoven, M. B. N. & Spurzem, R. The dynamical evolution of multiplanet systems in open clusters. Mon. Not. R. Astron. Soc. 433, 867-877 (2013).

    Article  ADS  Google Scholar 

  • Shara, M. M., Hurley, J. R. & Mardling, R. A. Dynamical interactions make hot Jupiters in open star clusters. Astrophys. J. 816, 59 (2016).

    Article  ADS  Google Scholar 

  • Cai, M. X., Kouwenhoven, M. B. N., Portegies Zwart, S. F. & Spurzem, R. Stability of multiplanetary systems in star clusters. Mon. Not. R. Astron. Soc. 470, 4337-4353 (2017).

    Article  ADS  Google Scholar 

  • Flammini Dotti, F., Kouwenhoven, M. B. N., Cai, M. X. & Spurzem, R. Planetary systems in a star cluster. I. The Solar System scenario. Mon. Not. R. Astron. Soc. 489, 2280-2297 (2019).

    Article  ADS  Google Scholar 

  • Fragione, G. Dynamical origin of S-type planets in close binary stars. Mon. Not. R. Astron. Soc. 483, 3465-3471 (2019).

    Article  ADS  Google Scholar 

  • Li, D., Mustill, A. J. & Davies, M. B. Fly-by encounters between two planetary systems. I. Solar System analogues. Mon. Not. R. Astron. Soc. 488, 1366-1376 (2019).

    Article  ADS  Google Scholar 

  • Wang, Y.-H., Perna, R. & Leigh, N. W. C. Planetary architectures in interacting stellar environments. Mon. Not. R. Astron. Soc. 496, 1453-1470 (2020).

    Article  ADS  Google Scholar 

  • Wang, Y.-H., Perna, R. & Leigh, N. W. C. Giant planet swaps during close stellar encounters. Astrophys. J. Lett. 891, L14 (2020).

    Article  ADS  Google Scholar 

  • Li, D., Mustill, A. J. & Davies, M. B. Flyby encounters between two planetary systems. II. Exploring the interactions of diverse planetary system architectures. Mon. Not. R. Astron. Soc. 496, 1149-1165 (2020).

    Article  ADS  Google Scholar 

  • Moore, N. W. H., Li, G. & Adams, F. C. Inclination excitation of Solar System debris disk due to stellar flybys. Astrophys. J. 901, 92 (2020).

    Article  ADS  Google Scholar 

  • Wang, Y.-H., Leigh, N. W. C., Perna, R. & Shara, M. M. Hot Jupiter and ultra-cold Saturn formation in dense star clusters. Astrophys. J. 905, 136 (2020).

    Article  ADS  Google Scholar 

  • Carter, E. J. & Stamatellos, D. On the survivability of a population of gas giant planets on wide orbits. Mon. Not. R. Astron. Soc. 525, 1912-1921 (2023).

    Article  ADS  Google Scholar 

  • Chen, C., Martin, R. G., Lubow, S. H. & Nixon, C. J. Tilted circumbinary planetary systems as efficient progenitors of free-floating planets. Astrophys. J. Lett. 961, L5 (2024).

    Article  ADS  Google Scholar 

  • Heggie, D. C. Binary evolution in stellar dynamics. Mon. Not. R. Astron. Soc. 173, 729-787 (1975).

    Article  ADS  Google Scholar 

  • Hut, P. & Bahcall, J. N. Binary-single star scattering. I. Numerical experiments for equal masses. Astrophys. J. 268, 319-341 (1983).

    Article  ADS  Google Scholar 

  • Sigurdsson, S. & Phinney, E. S. Binary-single star interactions in globular clusters. Astrophys. J. 415, 631-651 (1993).

    Article  ADS  Google Scholar 

  • Mathieu, R. D. Pre-main-sequence binary stars. Annu. Rev. Astron. Astrophys. 32, 465-530 (1994).

    Article  ADS  Google Scholar 

  • Raghavan, D. et al. A survey of stellar families: multiplicity of solar-type stars. Astrophys. J. Suppl. Ser. 190, 1 (2010).

    Article  ADS  Google Scholar 

  • Hillenbrand, L. A. & Hartmann, L. W. A preliminary study of the Orion nebula cluster structure and dynamics. Astrophys. J. 492, 540-553 (1998).

    Article  ADS  Google Scholar 

  • Nielsen, E. L. et al. The Gemini Planet Imager Exoplanet Survey: giant planet and brown dwarf demographics from 10 to 100 au. Astron. J. 158, 13 (2019).

    Article  ADS  Google Scholar 

  • Vigan, A. et al. The SPHERE infrared survey for exoplanets (SHINE). III. The demographics of young giant exoplanets below 300 au with SPHERE. Astron. Astrophys. 651, A72 (2021).

    Article  Google Scholar 

  • Zwart, S. P. & Hochart, E. The origin and evolution of wide Jupiter mass binary objects in young stellar clusters. Preprint at https://arxiv.org/abs/2312.04645 (2023).

  • Wang, Y.-H., Leigh, N. W. C., Liu, B. & Perna, R. SpaceHub: a high-performance gravity integration toolkit for few-body problems in astrophysics. Mon. Not. R. Astron. Soc. 505, 1053-1070 (2021).

    Article  ADS  Google Scholar 

  • Chambers, J. E., Wetherill, G. W. & Boss, A. P. The stability of multi-planet systems. Icarus 119, 261-268 (1996).

    Article  ADS  Google Scholar 

  • Adams, F. C. The birth environment of the Solar System. Annu. Rev. Astron. Astrophys. 48, 47-85 (2010).

    Article  ADS  Google Scholar 

  • Boley, A. C. The two modes of gas giant planet formation. Astrophys. J. Lett. 695, L53-L57 (2009).

    Article  ADS  Google Scholar 

  • Vicente, S. M. & Alves, J. Size distribution of circumstellar disks in the Trapezium cluster. Astron. Astrophys. 441, 195-205 (2005).

    Article  ADS  Google Scholar 

  • Mann, R. K. & Williams, J. P. The circumstellar disk mass distribution in the Orion Trapezium cluster. Astrophys. J. Lett. 694, L36-L40 (2009).

    Article  ADS  Google Scholar 

  • Wang, Y. jumbo dataset 1. figshare https://doi.org/10.6084/m9.figshare.25331110.v2 (2024).

  • Wang, Y. SpaceHub: a high-performance gravity integration toolkit for few-body problems in astrophysics. GitHub https://github.com/YihanWangAstro/SpaceHub (2019).

  • Wang, Y. Free-floating binary planets from ejections during close stellar encounters. GitHub https://github.com/YihanWangAstro/JuMBO-code/tree/main (2013).

  • < Back to 68k.news UK front page