< Back to 68k.news PT front page

Superradiant atoms enhance time measurement precision

Original source (on modern site) | Article images: [1]

Superradiant atoms enhance time measurement precision

by Robert Schreiber

Berlin, Germany (SPX) Apr 23, 2024



Researchers at the University of Copenhagen have developed a method that could enhance the precision of measuring time by leveraging the properties of superradiant atoms. This approach aims to address some of the existing limitations of modern atomic clocks, which are crucial in technologies ranging from GPS systems to space travel.

The second, as a unit of measurement, is defined with greater precision than other base units like the kilogram or meter. It is currently determined by atomic clocks worldwide that use radio waves to synchronize devices such as computers and smartphones.

Eliot Bohr, a PhD fellow at the Niels Bohr Institute and now with the University of Colorado, highlighted that current atomic clocks face precision issues due to the heating effect of detection lasers on atoms. "The process heats the atoms so much they escape, which degrades the clock's precision," Bohr explained. He is the lead author of a study published in Nature Communications that proposes a method potentially enhancing this accuracy.

The new technique involves cooling strontium atoms to nearly -273C in a magneto-optical trap, creating a stable environment for precise oscillation measurement without the need to replace the atoms frequently. "Using a phenomenon known as 'superradiance,' these atoms can emit a powerful light signal for time measurement without significant heating," Bohr said.

This innovation could improve GPS accuracy and the reliability of space mission timing, where even minor discrepancies can lead to significant navigation errors. Additionally, smaller, more portable atomic clocks could advance technologies that monitor gravitational changes to predict volcanic eruptions and earthquakes.

Despite its promise, Bohr noted that this superradiant method is still a "proof of concept" needing further refinement. The research, a collaboration among scientists from the Niels Bohr Institute, University of Innsbruck, and Columbia University, underscores the global effort required to push the boundaries of scientific discovery in timekeeping.

Research Report:Collectively enhanced Ramsey readout by cavity sub- to superradiant transition

Related Links

University of Copenhagen - Faculty of Science

Understanding Time and Space

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.

< Back to 68k.news PT front page