< Back to 68k.news CL front page

Asteroid Kamo'oalewa's journey from the lunar Giordano Bruno crater to Earth 1:1 resonance

Original source (on modern site)

  • De la Fuente Marcos, C. & De la Fuente Marcos, R. Asteroid (469219) 2016 HO3, the smallest and closest Earth quasi-satellite. Mon. Not. R. Astron. Soc. 462, 3441-3456 (2016).

    Article  ADS  Google Scholar 

  • Qi, Y. & Qiao, D. Co-orbital transition of 2016 HO3. Astrodynamics 7, 3-14 (2023).

    Article  ADS  Google Scholar 

  • Sharkey, B. N. et al. Lunar-like silicate material forms the Earth quasi-satellite (469219) 2016 HO3 Kamo'oalewa. Commun. Earth Environ. 2, 231 (2021).

    Article  ADS  Google Scholar 

  • Gong, Y. et al. Cosmology from the Chinese space station optical survey (CSS-OS). Astrophys. J. 883, 203 (2019).

    Article  ADS  Google Scholar 

  • Zhang, T., Xu, K. & Ding, X. China's ambitions and challenges for asteroid-comet exploration. Nat. Astron 5, 730-731 (2021).

    Article  ADS  Google Scholar 

  • Pieters, C. et al. Distinctive space weathering on Vesta from regolith mixing processes. Nature 491, 79-82 (2012).

    Article  ADS  Google Scholar 

  • Milliken, R. The RELAB Spectral Library Bundle. NASA Planetary Data System https://doi.org/10.17189/1519032 (2020).

  • Nishiizumi, K. et al. Exposure histories of lunar meteorites: ALHA81005, MAC88104, MAC88105, and Y791197. Geochim. Cosmochim. Acta 55, 3149-3155 (1991).

    Article  ADS  Google Scholar 

  • Binzel, R. et al. Compositional distributions and evolutionary processes for the near-Earth object population: results from the MIT-Hawaii Near-Earth Object Spectroscopic Survey (MITHNEOS). Icarus 324, 41-76 (2019).

    Article  ADS  Google Scholar 

  • DeMeo, F. E., Binzel, R. P., Slivan, S. M. & Bus, S. J. An extension of the Bus asteroid taxonomy into the near-infrared. Icarus 202, 160-180 (2009).

    Article  ADS  Google Scholar 

  • Migliorini, F. et al. Vesta fragments from v6 and 3:1 resonances: implications for V-type near-Earth asteroids and howardite, eucrite and diogenite meteorites. Meteorit. Planet. Sci. 32, 903-916 (1997).

    Article  ADS  Google Scholar 

  • DeMeo, F. E. et al. Olivine-dominated A-type asteroids in the main belt: distribution, abundance and relation to families. Icarus 322, 13-30 (2019).

    Article  ADS  Google Scholar 

  • Melosh, H. J. Impact Cratering: a Geologic Process (Oxford Univ. Press, 1989).

  • Bart, G. D. & Melosh, H. Distributions of boulders ejected from lunar craters. Icarus 209, 337-357 (2010).

    Article  ADS  Google Scholar 

  • Horányi, M. et al. A permanent, asymmetric dust cloud around the Moon. Nature 522, 324-326 (2015).

    Article  ADS  Google Scholar 

  • Singer, K. N., Jolliff, B. L. & McKinnon, W. B. Lunar secondary craters and estimated ejecta block sizes reveal a scale-dependent fragmentation trend. J. Geophys. Res. Planets 125, e2019JE006313 (2020).

    Article  ADS  Google Scholar 

  • Hawke, B. R. et al. The origin of lunar crater rays. Icarus 170, 1-16 (2004).

    Article  ADS  Google Scholar 

  • Gladman, B. J., Burns, J. A., Duncan, M. J. & Levison, H. F. The dynamical evolution of lunar impact ejecta. Icarus 118, 302-321 (1995).

    Article  ADS  Google Scholar 

  • Castro-Cisneros, J. D., Malhotra, R. & Rosengren, A. J. Lunar ejecta origin of near-Earth asteroid Kamo'oalewa is compatible with rare orbital pathways. Commun. Earth Environ. 4, 372 (2023).

    Article  ADS  Google Scholar 

  • Yeomans, D. K. & Chamberlin, A. B. Comparing the Earth impact flux from comets and near-Earth asteroids. Acta Astronaut. 90, 3-5 (2013).

    Article  ADS  Google Scholar 

  • Artemieva, N. & Shuvalov, V. Numerical simulation of high-velocity impact ejecta following falls of comets and asteroids onto the Moon. Sol. Syst. Res. 42, 329-334 (2008).

    Article  ADS  Google Scholar 

  • Benz, W. & Asphaug, E. Simulations of brittle solids using smooth particle hydrodynamics. Comput. Phys. Commun. 87, 253-265 (1995).

    Article  ADS  Google Scholar 

  • Grady, D. E. & Kipp, M. E. Continuum modelling of explosive fracture in oil shale. Int. J. Rock Mech. Min. Sci. 17, 147-157 (1980).

    Article  Google Scholar 

  • Melosh, H., Ryan, E. & Asphaug, E. Dynamic fragmentation in impacts: hydrocode simulation of laboratory impacts. J. Geophys. Res. Planets 97, 14735-14759 (1992).

    Article  ADS  Google Scholar 

  • Schmidt, R. M. & Housen, K. R. Some recent advances in the scaling of impact and explosion cratering. Int. J. Impact Eng. 5, 543-560 (1987).

    Article  ADS  Google Scholar 

  • Melosh, H. Impact ejection, spallation, and the origin of meteorites. Icarus 59, 234-260 (1984).

    Article  ADS  Google Scholar 

  • Vokrouhlicky`, D. & Čapek, D. YORP-induced long-term evolution of the spin state of small asteroids and meteoroids: Rubincam's approximation. Icarus 159, 449-467 (2002).

    Article  ADS  Google Scholar 

  • Robbins, S. J. A new global database of lunar impact craters >1-2 km: 1. Crater locations and sizes, comparisons with published databases, and global analysis. J. Geophys. Res. Planets 124, 871-892 (2019).

    Article  ADS  Google Scholar 

  • Barlow, N. Status report on crater databases for Mercury, the Moon, Mars, and Ganymede. In Proc. Third Planetary Data Workshop and The Planetary Geologic Mappers Annual Meeting, Abstract 7027 (Lunar and Planetary Institute, 2017).

  • Neukum, G., Ivanov, B. & Hartmann, W. Cratering records in the inner solar system in relation to the lunar reference system. Space Sci. Rev. 96, 55-86 (2001).

    Article  ADS  Google Scholar 

  • Bottke, W., Nolan, M. C., Greenberg, R. & Kolvoord, R. A. in Hazards Due to Comets and Asteroids (ed. Gehrels T.) 337-357 (Univ. of Arizona Press, 1994).

  • Gladman, B., Michel, P. & Froeschlé, C. The near-Earth object population. Icarus 146, 176-189 (2000).

    Article  ADS  Google Scholar 

  • Huang, Y. & Gladman, B. Four-billion year stability of the Earth-Mars belt. Mon. Not. R. Astron. Soc. 500, 1151-1157 (2021).

    Article  ADS  Google Scholar 

  • Mazrouei, S., Ghent, R. R., Bottke, W. F., Parker, A. H. & Gernon, T. M. Earth and Moon impact flux increased at the end of the Paleozoic. Science 363, 253-257 (2019).

    Article  ADS  Google Scholar 

  • Morota, T. et al. Formation age of the lunar crater Giordano Bruno. Meteorit. Planet. Sci. 44, 1115-1120 (2009).

    Article  ADS  Google Scholar 

  • Drozd, R., Hohenberg, C., Morgan, C., Podosek, F. & Wroge, M. Cosmic-ray exposure history at Taurus-Littrow. In Proc. Lunar Science Conference, Abstract 1087 (Lunar and Planetary Institute, 1977).

  • Bhattacharya, S. & Saran, S. Enhanced hydration at Giordano Bruno crater on the far side of the Moon and its implications. In Proc. 48th Annual Lunar and Planetary Science Conference, Abstract 1780 (Lunar and Planetary Institute, 2017).

  • Basilevsky, A. & Head, J. Age of Giordano Bruno crater as deduced from the morphology of its secondaries at the Luna 24 landing site. Planet. Space Sci. 73, 302-309 (2012).

    Article  ADS  Google Scholar 

  • König, B., Neukum, G. & Fechtig, H. Recent lunar cratering: absolute ages of Kepler, Aristarchus, Tycho. In Proc. Lunar Science Conference, Abstract 1190 (Lunar and Planetary Institute, 1977).

  • Harris, A. W., Boslough, M., Chapman, C. R., Drube, L. & Michel, P. in Asteroids IV (eds Bottke, W. F., DeMeo F. E. & Michel, P.) 835-854 (Univ. of Arizona Press, 2015).

  • Mainzer, A. et al. Near-Earth object Surveyor mission: data products and survey plan. In AAS/Division for Planetary Sciences Meeting Abstracts, Vol. 53 (American Astronomical Society, 2021).

  • Fritz, J. Impact ejection of lunar meteorites and the age of Giordano Bruno. Icarus 221, 1183-1186 (2012).

    Article  ADS  Google Scholar 

  • Morais, M. & Morbidelli, A. The population of near-Earth asteroids in co-orbital motion with the Earth. Icarus 160, 1-9 (2002).

    Article  ADS  Google Scholar 

  • Granvik, M. et al. Debiased orbit and absolute-magnitude distributions for near-Earth objects. Icarus 312, 181-207 (2018).

    Article  ADS  Google Scholar 

  • DeMeo, F. E. & Carry, B. Solar System evolution from compositional mapping of the asteroid belt. Nature 505, 629-634 (2014).

    Article  ADS  Google Scholar 

  • Delbo, M. et al. Alignment of fractures on Bennu's boulders indicative of rapid asteroid surface evolution. Nat. Geosci. 15, 453-457 (2022).

    Article  ADS  Google Scholar 

  • Zhang, Y. & Michel, P. Shapes, structures, and evolution of small bodies. Astrodynamics 5, 293-329 (2021).

    Article  ADS  Google Scholar 

  • Cambioni, S. et al. Fine-regolith production on asteroids controlled by rock porosity. Nature 598, 49-52 (2021).

    Article  ADS  Google Scholar 

  • Rozitis, B., MacLennan, E. & Emery, J. P. Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075) 1950 DA. Nature 512, 174-176 (2014).

    Article  ADS  Google Scholar 

  • Lauretta, D. et al. The unexpected surface of asteroid (101955) Bennu. Nature 568, 55-60 (2019).

    Article  ADS  Google Scholar 

  • Mahlke, M., Carry, B. & Mattei, P.-A. Asteroid taxonomy from cluster analysis of spectrometry and albedo. Astron. Astrophys. 665, A26 (2022).

    Article  ADS  Google Scholar 

  • Jiao, Y., Yan, X., Cheng, B. & Baoyin, H. SPH-DEM modelling of hypervelocity impacts on rubble-pile asteroids. Mon. Not. R. Astron. Soc. 527, 10348-10357 (2024).

    Article  Google Scholar 

  • Bui, H. H., Fukagawa, R., Sako, K. & Ohno, S. Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model. Int. J. Numer. Anal. Methods Geomech. 32, 1537-1570 (2008).

    Article  Google Scholar 

  • Tillotson, J. H. Metallic Equations of State for Hypervelocity Impact, Technical Report (General Dynamics, 1962).

  • Collins, G. S., Melosh, H. J. & Ivanov, B. A. Modeling damage and deformation in impact simulations. Meteorit. Planet. Sci. 39, 217-231 (2004).

    Article  ADS  Google Scholar 

  • Jutzi, M. SPH calculations of asteroid disruptions: the role of pressure dependent failure models. Planet. Space Sci. 107, 3-9 (2015).

    Article  ADS  Google Scholar 

  • Rein, H. & Liu, S.-F. REBOUND: an open-source multi-purpose N-body code for collisional dynamics. Astron. Astrophys. 537, A128 (2012).

    Article  ADS  Google Scholar 

  • Rein, H. et al. Hybrid symplectic integrators for planetary dynamics. Mon. Not. R. Astron. Soc. 485, 5490-5497 (2019).

    Article  ADS  Google Scholar 

  • Rein, H. & Tamayo, D. WHFAST: a fast and unbiased implementation of a symplectic Wisdom-Holman integrator for long-term gravitational simulations. Mon. Not. R. Astron. Soc. 452, 376-388 (2015).

    Article  ADS  Google Scholar 

  • Rein, H. & Spiegel, D. S. IAS15: a fast, adaptive, high-order integrator for gravitational dynamics, accurate to machine precision over a billion orbits. Mon. Not. R. Astron. Soc. 446, 1424-1437 (2015).

    Article  ADS  Google Scholar 

  • Park, R. S., Folkner, W. M., Williams, J. G. & Boggs, D. H. The JPL planetary and lunar ephemerides DE440 and DE441. Astron. J. 161, 105 (2021).

    Article  ADS  Google Scholar 

  • Delbo, M., Mueller, M., Emery, J., Rozitis, B. & Capria, M. in Asteroids IV (eds Bottke, W. F., DeMeo F. E. & Michel, P.) 107-128 (Univ. of Arizona Press, 2015).

  • Fenucci, M. & Novaković, B. The role of the Yarkovsky effect in the long-term dynamics of asteroid (469219) Kamo'oalewa. Astron. J. 162, 227 (2021).

    Article  ADS  Google Scholar 

  • Burns, J. A., Lamy, P. L. & Soter, S. Radiation forces on small particles in the solar system. Icarus 40, 1-48 (1979).

    Article  ADS  Google Scholar 

  • The classy code. GitHub https://github.com/maxmahlke/classy (2022).

  • The REBOUND code. GitHub https://github.com/hannorein/rebound (2024).

  • Connors, M., Wiegert, P. & Veillet, C. Earth's Trojan asteroid. Nature 475, 481-483 (2011).

    Article  ADS  Google Scholar 

  • Santana-Ros, T. et al. Orbital stability analysis and photometric characterization of the second Earth trojan asteroid 2020 XL5. Nat. Commun. 13, 447 (2022).

    Article  ADS  Google Scholar 

  • Robinson, M. S. et al. Lunar Reconnaissance Orbiter Camera (LROC) instrument overview. Space Sci. Rev. 150, 81-124 (2010).

    Article  ADS  Google Scholar 

  • < Back to 68k.news CL front page