< Back to 68k.news CH front page

Jet activity on Enceladus linked to tidally driven strike-slip motion along tiger stripes

Original source (on modern site)

References

  1. Porco, C. et al. Cassini observes the active south pole of enceladus. Science 311, 1393-1401 (2006).

  2. Postberg, F. et al. Sodium salts in e-ring ice grains from an ocean below the surface of enceladus. Nature 459, 1098-1101 (2009).

    Article  CAS  Google Scholar 

  3. Yin, A. & Pappalardo, R. Gravitational spreading, bookshelf faulting, and tectonic evolution of the South Polar Terrain of Saturn's moon Enceladus. Icarus 260, 409-439 (2015).

    Article  Google Scholar 

  4. Spencer, J. et al. Plume Origins and Plumbing (Ocean to Surface) (Univ. Arizona Press, 2018).

  5. Thomas, P. et al. Enceladus's measured physical libration requires a global subsurface ocean. Icarus 264, 37-47 (2016).

    Article  Google Scholar 

  6. Stephanie, A. & Montési, L. The impact of a pressurized regional sea or global ocean on stresses on enceladus. J. Geophys. Res. Planets 122, 1258-1275 (2017).

  7. Ingersoll, A., Ewald, S. & Trumbo, S. Time variability of the enceladus plumes: orbital periods, decadal periods, and aperiodic change. Icarus 344, 113345 (2020).

  8. Murray, C. & Dermott, S. Solar System Dynamics (Cambridge Univ. Press, 2000).

  9. Nimmo, F., Barr, A., Behounkova, M. & McKinnon, W. The Thermal and Orbital Evolution of Enceladus (Univ. Arizona Press, 2018).

  10. Hurford, T., Helfenstein, P., Hoppa, G., Greenberg, R. & Bills, B. Eruptions arising from tidally controlled periodic openings of rifts on enceladus. Nature 447, 292-294 (2007).

    Article  CAS  Google Scholar 

  11. Souček, O., Hron, J., Běhounková, M. & Čadek, O. Effect of the tiger stripes on the deformation of Saturn's moon Enceladus. Geophys. Res. Lett. 43, 7417-7423 (2016).

    Article  Google Scholar 

  12. Nakajima, M. & Ingersoll, A. Controlled boiling on enceladus. 1. model of the vapor-driven jets. Icarus 272, 309-318 (2016).

    Article  Google Scholar 

  13. Kite, E. & Rubin, A. Sustained eruptions on enceladus explained by turbulent dissipation in tiger stripes. Proc. Natl Acad. Sci. USA 113, 3972-3975 (2016).

    Article  CAS  Google Scholar 

  14. Behounková, M. et al. Timing of water plume eruptions on enceladus explained by interior viscosity structure. Nat. Geosci. 8, 601-604 (2015).

  15. Porco, C., Dinino, D. & Nimmo, F. How the geysers, tidal stresses, and thermal emission across the south polar terrain of enceladus are related. Astron. J. 148, 45 (2014).

    Article  Google Scholar 

  16. Crawford, G. & Stevenson, D. Gas-driven water volcanism and the resurfacing of Europa. Icarus 73, 66-79 (1988).

    Article  CAS  Google Scholar 

  17. Nimmo, F., Spencer, J., Pappalardo, R. & Mullen, M. Shear heating as the origin of the plumes and heat flux on enceladus. Nature 447, 289-291 (2007).

    Article  CAS  Google Scholar 

  18. Smith-Konter, B. & Pappalardo, R. Tidally driven stress accumulation and shear failure of Enceladus's tiger stripes. Icarus 198, 435-451 (2008).

    Article  Google Scholar 

  19. Postberg, F., Schmidt, J., Hillier, J., Kempf, S. & Srama, R. A salt-water reservoir as the source of a compositionally stratified plume on enceladus. Nature 474, 620-622 (2011).

    Article  CAS  Google Scholar 

  20. Postberg, F. et al. Plume and Surface Composition of Enceladus (Univ. Arizona Press, 2018).

  21. Sládková, K. P., Souček, O. & Běhounková, M. Enceladus' tiger stripes as frictional faults: effect on stress and heat production. Geophys. Res. Lett. 48, 19 (2021).

  22. Berne, A., Simons, M., Keane, J. & Park, R. Inferring the mean thickness of the outer ice shell of Enceladus from diurnal crustal deformation. J. Geophys. Res. E 128, 6 (2023).

  23. Berne, A., Simons, M., Keane, J. & Park, R. Using tidally-driven elastic strains to infer regional variations in crustal thickness at enceladus. Geophys. Res. Lett. 50, 311-318 (2023).

    Article  Google Scholar 

  24. Van Hoolst, T., Baland, R. & Trinh, A. The diurnal libration and interior structure of Enceladus. Icarus 277, 111-131 (2016).

    Article  Google Scholar 

  25. Hemingway, D. & Mittal, T. Enceladus's ice shell structure as a window on internal heat production. Icarus 332, 111-131 (2019).

    Article  Google Scholar 

  26. Park, R. et al. The global shape, gravity field, and libration of Enceladus. J. Geophys. Res. Planets 125, 157 (2024).

  27. Ermakov, A. et al. A recipe for the geophysical exploration of Enceladus. Planet. Sci. J. 2, 157 (2021).

    Article  Google Scholar 

  28. Hemingway, D., Iess, L., Tajeddine, R. & Tobie, G.The Interior of Enceladus (Univ. of Arizona Press, 2018).

  29. Rozhko, A., Podladchikov, Y. & Renard, F. Failure patterns caused by localized rise in pore-fluid overpressure and effective strength of rocks. Geophys. Res. Lett. 34, 22 (2007).

  30. Schulson, E. & Fortt, A. Friction of ice on ice. J. Geophys. Res. Solid Earth 117, B12 (2012).

  31. Meyer, C. et al. A mushy source for the geysers of Enceladus. Preprint at https://doi.org/10.48550/arXiv.2208.06714 (2022).

  32. Behounkova, M., Soucek, O., Hron, J. & Cadec, O. Plume activity and tidal deformation on Enceladus influenced by faults and variable ice shell thickness. Astrobiology 17, 941-954 (2017).

    Article  Google Scholar 

  33. Maeno, N., Arakawa, M., Yasutome, A., Mizukami, N. & Kanazawa, S. Ice-ice friction measurements, and water lubrication and adhesion-shear mechanisms. Can. J. Phys. 81, 241-249 (2003).

    Article  CAS  Google Scholar 

  34. Sukhorukov, S. & Løset, S. Friction of sea ice on sea ice. Cold Reg. Sci. Technol. 94, 1-12 (2013).

    Article  Google Scholar 

  35. Schenk, P. Cartographic and topographic mapping of the icy satellites of the outer Solar System. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Vol. XXXVII Part B4 967-972 (2008).

  36. Wahr, J., Zuber, M., Smith, D. & Lunine, J. Tides on Europa, and the thickness of Europa's icy shell. J. Geophys. Res. E https://doi.org/10.1029/2006JE002729 (2006).

  37. Han, L. et al. Continental rupture and the creation of new crust in the salton trough rift, southern California and northern Mexico: results from the Salton seismic imaging project. J. Geophys. Res. Solid Earth 121, 7469-7489 (2016).

  38. Rossi, C., Cianfarra, P., Salvini, F., Bourgeois, O. & Tobie, G. Tectonics of Enceladus' South Pole: block rotation of the tiger stripes. J. Geophys. Res. Planets https://doi.org/10.1029/2020JE006471 (2020).

  39. Patthoff, A. & Kattenhorn, S. A fracture history on enceladus provides evidence for a global ocean. Geophys. Res. Lett. https://doi.org/10.1029/2011GL048387 (2011).

  40. Simons, M. & Rosen, P. in Treatise on Geophysics 2nd edn Vol. 3 (ed. Schubert, G.) 391-445 (Elsevier, 2015).

  41. Wahr, J. et al. Modeling stresses on satellites due to nonsynchronous rotation and orbital eccentricity using gravitational potential theory. Icarus 200, 188-206 (2009).

    Article  CAS  Google Scholar 

  42. Schubert, G., Anderson, J., Travis, B. & Palguta, J. Enceladus: present internal structure and differentiation by early and long-term radiogenic heating. Icarus 188, 345-355 (2007).

    Article  CAS  Google Scholar 

  43. Rovira-Navarro, M., Matsuyama, I. & Berne, A. A spectral method to compute the tides of laterally-heterogeneous bodies. Preprint at https://doi.org/10.48550/arXiv.2311.15710 (2023).

  44. Aagaard, B. et al. PyLith v4.0.0. Zenodo https://doi.org/10.5281/zenodo.10359667 (2023).

  45. Balay, S. et al. PETSc Users Manual Revision 3.5 No. ANL-95/11 Rev. 3.5 (Argonne National Laboratory, 2014).

  46. Melosh, H. & Raefsky, A. A simple and efficient method for introducing faults into finite element computations. Bull. Seismol. Soc. Am. 71, 1391-1400 (1981).

    Article  Google Scholar 

  47. Segall, P. Earthquake and Volcano Deformation (Princeton Univ. Press, 2010).

  48. Skroch, M. et al. CUBIT Geometry and Mesh Generation Toolkit 15.4 User Documentation (Sandia National Laboratories, 2019).

  49. Hemingway, D. & Isamu, M. Isostatic equilibrium in spherical coordinates and implications for crustal thickness on the Moon, Mars, Enceladus, and elsewhere. Geophys. Res. Lett. 44, 7695-7705 (2017).

  50. Aagaard, B., Williams, C. & Knepley, M. PyLith: a finite-element code for modeling quasi-static and dynamic crustal deformation. geodynamics/pylith v2.2.2 (v2.2.2). Zenodo https://doi.org/10.5281/zenodo.3269486 (2022).

  51. Berne, A., Simons, M., Keane, J., Leonard, E. & Park, R. acberne/Berne_2023_FEA_Code_Files_A_Relationship_Between_ Strike_Slip_Motion_and_Jet_Activity_over_Tiger_Stripes_on_Enceladus: repository containing modified finite element code and a user manual used for study. Zenodo https://doi.org/10.5281/zenodo.1058516 (2023).

Download references

< Back to 68k.news CH front page