< Back to 68k.news AT front page

Observation of Landau levels and chiral edge states in photonic crystals through pseudomagnetic fields induced by synthetic strain

Original source (on modern site)

References

  1. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772-775 (2009).

    Article  ADS  Google Scholar 

  2. Kane, C. L. & Mele, E. J. Size, shape, and low energy electronic structure of carbon nanotubes. Phys. Rev. Lett. 78, 1932-1935 (1997).

    Article  ADS  Google Scholar 

  3. Guinea, F., Katsnelson, M. I. & Geim, A. K. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 6, 30-33 (2010).

    Google Scholar 

  4. Levy, N. et al. Strain-induced pseudo-magnetic fields greater than 300 Tesla in graphene nanobubbles. Science 329, 544-547 (2010).

    Article  ADS  Google Scholar 

  5. Gomes, K. K., Mar, W., Ko, W., Guinea, F. & Manoharan, H. C. Designer Dirac fermions and topological phases in molecular graphene. Nature 483, 306-310 (2012).

    Article  ADS  Google Scholar 

  6. Rechtsman, M. C. et al. Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures. Nat. Photon. 7, 153-158 (2013).

    Article  ADS  Google Scholar 

  7. Song, W. et al. Dispersionless coupling among optical waveguides by artificial gauge field. Phys. Rev. Lett. 129, 053901 (2022).

    Article  ADS  Google Scholar 

  8. Bellec, M., Poli, C., Kuhl, U., Mortessagne, F. & Schomerus, H. Observation of supersymmetric pseudo-Landau levels in strained microwave graphene. Light Sci. Appl. 9, 146 (2020).

    Article  ADS  Google Scholar 

  9. Jia, H. et al. Experimental realization of chiral Landau levels in two-dimensional Dirac cone systems with inhomogeneous effective mass. Light Sci. Appl. 12, 165 (2023).

  10. Wang, W. et al. Moiré fringe induced gauge field in photonics. Phys. Rev. Lett. 125, 203901 (2020).

    Article  ADS  Google Scholar 

  11. Jamadi, O. et al. Direct observation of photonic Landau levels and helical edge states in strained honeycomb lattices. Light Sci. Appl. 9, 144 (2020).

    Article  ADS  Google Scholar 

  12. Duan, G. et al. Synthetic gauge fields and Landau levels in acoustic Moiré superlattices. Appl. Phys. Lett. 123, 021702 (2023).

  13. Wen, X. et al. Acoustic Landau quantization and quantum-Hall-like edge states. Nat. Phys. 15, 352-356 (2019).

    Article  Google Scholar 

  14. Yang, Z., Gao, F., Yang, Y. & Zhang, B. Strain-induced gauge field and Landau levels in acoustic structures. Phys. Rev. Lett. 118, 194301 (2017).

    Article  ADS  Google Scholar 

  15. Abbaszadeh, H., Souslov, A., Paulose, J., Schomerus, H. & Vitelli, V. Sonic Landau levels and synthetic gauge fields in mechanical metamaterials. Phys. Rev. Lett. 119, 195502 (2017).

    Article  ADS  Google Scholar 

  16. Peri, V., Serra-Garcia, M., Ilan, R. & Huber, S. D. Axial-field-induced chiral channels in an acoustic Weyl system. Nat. Phys. 15, 357-361 (2019).

    Article  Google Scholar 

  17. Guglielmon, J., Rechtsman, M. C. & Weinstein, M. I. Landau levels in strained two-dimensional photonic crystals. Phys. Rev. A 103, 013505 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  18. Salerno, G., Ozawa, T., Price, H. M. & Carusotto, I. How to directly observe Landau levels in driven-dissipative strained honeycomb lattices. 2D Mater. 2, 034015 (2015).

    Article  Google Scholar 

  19. Salerno, G., Ozawa, T., Price, H. M. & Carusotto, I. Propagating edge states in strained honeycomb lattices. Phys. Rev. B 95, 245418 (2017).

    Article  ADS  Google Scholar 

  20. Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nat. Phys. 7, 907-912 (2011).

    Article  Google Scholar 

  21. Schine, N., Ryou, A., Gromov, A., Sommer, A. & Simon, J. Synthetic Landau levels for photons. Nature 534, 671-675 (2016).

    Article  ADS  Google Scholar 

  22. Borregaard, J., Sørensen, A. S. & Lodahl, P. Quantum networks with deterministic spin-photon interfaces. Adv. Quantum Technol. 2, 1800091 (2019).

    Article  Google Scholar 

  23. Krauss, T. F. Why do we need slow light? Nat. Photon. 2, 448-450 (2008).

    Article  ADS  Google Scholar 

  24. Smirnova, D., Leykam, D., Chong, Y. & Kivshar, Y. Nonlinear topological photonics. Appl. Phys. Rev. 7, 021306 (2020).

    Article  ADS  Google Scholar 

  25. Yang, Y. et al. Photonic flatband resonances for free-electron radiation. Nature 613, 42-47 (2023).

    Article  ADS  Google Scholar 

  26. Schomerus, H. & Halpern, N. Y. Parity anomaly and Landau-level lasing in strained photonic honeycomb lattices. Phys. Rev. Lett. 110, 013903 (2013).

    Article  ADS  Google Scholar 

  27. Lledó, C., Carusotto, I. & Szymanska, M. Polariton condensation into vortex states in the synthetic magnetic field of a strained honeycomb lattice. SciPost Phys. 12, 068 (2022).

    Article  Google Scholar 

  28. Sheng, C. et al. Bound vortex light in an emulated topological defect in photonic lattices. Light Sci. Appl. 11, 243 (2022).

    Article  ADS  Google Scholar 

  29. Gorlach, M. A. et al. Far-field probing of leaky topological states in all-dielectric metasurfaces. Nat. Commun. 9, 909 (2018).

    Article  ADS  Google Scholar 

  30. Parappurath, N., Alpeggiani, F., Kuipers, L. & Verhagen, E. Direct observation of topological edge states in silicon photonic crystals: spin, dispersion, and chiral routing. Sci. Adv. 6, eaaw4137 (2020).

    Article  ADS  Google Scholar 

  31. Barczyk, R. et al. Interplay of leakage radiation and protection in topological photonic crystal cavities. Laser Photonics Rev. 2022, 2200071 (2022).

    Article  Google Scholar 

  32. Huang, Z.-T. et al. Pattern-tunable synthetic gauge fields in topological photonic graphene. Nanophotonics 11, 1297-1308 (2022).

  33. Wu, L.-H. & Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015).

    Article  ADS  Google Scholar 

  34. Kiriushechkina, S. et al. Spin-dependent properties of optical modes guided by adiabatic trapping potentials in photonic Dirac metasurfaces. Nat. Nanotechnol. 18, 875-881 (2023).

    Article  ADS  Google Scholar 

  35. Ren, B. et al. Zero-energy edge states and solitons in strained photonic graphene. Phys. Rev. A 107, 043504 (2023).

    Article  ADS  Google Scholar 

  36. Barik, S., Miyake, H., DeGottardi, W., Waks, E. & Hafezi, M. Two-dimensionally confined topological edge states in photonic crystals. New J. Phys. 18, 113013 (2016).

    Article  ADS  Google Scholar 

  37. Reardon, C. P., Rey, I. H., Welna, K., O'Faolain, L. & Krauss, T. F. Fabrication and characterization of photonic crystal slow light waveguides and cavities. J. Vis. Exp. e50216 (2012).

  38. Akhmerov, A. R. & Beenakker, C. W. J. Boundary conditions for Dirac fermions on a terminated honeycomb lattice. Phys. Rev. B 77, 085423 (2008).

    Article  ADS  Google Scholar 

  39. Kohmoto, M. & Hasegawa, Y. Zero modes and edge states of the honeycomb lattice. Phys. Rev. B 76, 205402 (2007).

    Article  ADS  Google Scholar 

  40. Ma, T. & Shvets, G. All-Si valley-Hall photonic topological insulator. New J. Phys. 18, 025012 (2016).

    Article  ADS  Google Scholar 

  41. Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016).

    Article  ADS  Google Scholar 

  42. Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  43. Settnes, M., Leconte, N., Barrios-Vargas, J. E., Jauho, A.-P. & Roche, S. Quantum transport in graphene in presence of strain-induced pseudo-Landau levels. 2D Mater. 3, 034005 (2016).

    Article  Google Scholar 

  44. COMSOL Multiphysics version 5.2. COMSOL AB https://www.comsol.com/ (2015).

Download references

< Back to 68k.news AT front page